منابع مشابه
Undecidable Diophantine Equations
In 1900 Hubert asked for an algorithm to decide the solvability of all diophantine equations, P(x1, . . . , xv) = 0, where P is a polynomial with integer coefficients. In special cases of Hilbert's tenth problem, such algorithms are known. Siegel [7] gives an algorithm for all polynomials P(xx, . . . , xv) of degree < 2. From the work of A. Baker [1] we know that there is also a decision proced...
متن کاملDiophantine undecidable theories of arithmetic
1 Diophantine undecidability Let T be a theory in the usual rst-order language of arithmetic L A (with non-logical symbols 0; 1; +; ; <) extending PA ? , the theory of the nonnegative parts of discretely ordered rings. I shall make use of the usual classes of L A-formulas deened in terms of quantiier complexity, 9 1 1 is the set of L A-formulas of the form 9 x (x; y) with quantiier-free, and 1 ...
متن کاملDiophantine approximation and Diophantine equations
The first course is devoted to the basic setup of Diophantine approximation: we start with rational approximation to a single real number. Firstly, positive results tell us that a real number x has “good” rational approximation p/q, where “good” is when one compares |x − p/q| and q. We discuss Dirichlet’s result in 1842 (see [6] Course N◦2 §2.1) and the Markoff–Lagrange spectrum ([6] Course N◦1...
متن کاملDiophantine Approximations, Diophantine Equations, Transcendence and Applications
This article centres around the contributions of the author and therefore, it is confined to topics where the author has worked. Between these topics there are connections and we explain them by a result of Liouville in 1844 that for an algebraic number α of degree n ≥ 2, there exists c > 0 depending only on α such that | α− p q |> c qn for all rational numbers p q with q > 0. This inequality i...
متن کاملDiophantine Equations Related with Linear Binary Recurrences
In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1980
ISSN: 0273-0979
DOI: 10.1090/s0273-0979-1980-14832-6